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What is a Battery?



A "Battery” Is

* A pair of electrochemical reactions in
which electrons are passed through an
external circuit

* The external circuit is your device
* A cell Is one palr
* A battery is a series of cell



Series vs. Parallel

* |n series, potential adds, capacity is
constant

* |n parallel, capacity adds, potential is
constant

* Either way the energy is the same

* The efficiency/accessibility depends on
your device



Electrochemical Reactions

* Are just like any other reaction, but
mediated by an electron transfer

e Just like fuel + oxygen leads is required
for combustion, a battery, internally,

undergoes the same process
e only much more controlled



Electrochemical Reactions

* Are critical beyond batteries
* Metal Plating
e Corrosion
* Sensors



Batteries vs. Devices
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Batteries vs. Devices
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Battery Basics



Battery [deals

e Chemistry

e Electrode Volume
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Battery [deals

* The potential of a reaction is determined
by the Gibbs Free Energy of a reaction:

AG = - nFAE

N = # of electrons transferred per molecule
E = Potential (V)
F = Faraday’s Constant (C/mol of electrons)
G = Free Energy of Reaction (J)

* \What determines the Gibbs free energy
IS well beyond me



Battery [deals

* The capacity of the anode and cathode
should be balanced to optimize the

energy and power density
e However, there are tradeoffs

* The effective capacity of the device can
be modeled using Faraday’s law and the
active mass of the limiting electrode



Battery [deals

* The power density is determined by how
fast the slowest reaction involved can
occur. The faster the reaction, the faster
energy can be spent, the higher the

power P =FE/s
Fi: Power (W)

—nergy (J)
s = Time ()

* The rate of reaction is determined by the
elements in play




Battery [deals

* For any given reaction, having larger
electrodes will increase capacity, and
having more area exposed for reaction

will improve power delivery
(Just add batteries in parallel*)

. . . . N

* not quite that easy




Battery Realities
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Battery Realities

* The faster a battery can provide its

power, the less time it can sit of a shelf

* Not a hard a fast rule, but generally true for cheaper
cells



Battery Realities

* Primary vs. Secondary
* Primary batteries cannot be recharged

* \Why do we even bother?

e Cost (your duracell)
* Energy Density (your watch battery)

* \Why can’t they be recharged??

e All sorts of reasons



The “C” Myth

e As rates increase over C/5, cheap and
small batteries demonstrate less
capacity
* C may mean 50 minutes
e 10 C may mean 1 minute

* Dependent on a host of factors
* Internal heating
e Diffusion rates
* Electrolyte ohmic drops



Battery Realities

e Secondary batteries don’t last for ever

* When they fall, they are failing because
they are breaking themselves apart to
work for you (literally dying for you)

* All secondary batteries except NiCd last

longer when minimally discharged
* Really



Battery Nonlinearity

e Batteries are rated for a given capacity
* A good NiMH provides 2500 mMAh @ 1.2V

* C rating is discharge rate, thus
e C/10 (250 mA) = 10 hours to full discharge
e C/5 (500 mA) = 5 hours to full discharge
* C(2.5A) =1 hour (oris it?)
* 10 C (25 A) = 6 minute discharge (really?)



Battery Non-linearity

* |f you to spend X coulombsinY
seconds, why does it matter if X is
getting larger and Y is getting smaller?

e Batteries are non linear devices

* As current draw from a battery increases, the
capacity consumed is disproportionally higher



VWhat this means

* To preserve the life of a battery, design
at least 2 hours of battery life into the

product
e More on this later



Battery lypes



Battery Comparison

En?\;\%]rd/ig]s ity [$§\:/c\)/_s:"] Cycle life Temperature [K] Notes
Zn-MnQO2 55-60 0.05 1-50 Ambient Cheap! Primary (non rechargeable)
Lithium Metal 1000 1 1-10 Ambient Best energy density, Primary
Li-ion 100~200 1 ~1200 Ambient High energy density, high cost, difficult to scale
Na-S 180 ~0.6 500~2000 620K High Temperature, Molten Na Dangerous
Zn-Br, 30 0.3 2000 Ambient  |Complex reaction, Bromine Dangerous
Lead-Acid 30~50 ~0.4 ~500 Ambient Low energy density, limited cycle life
MH-NiOOH 60~75 ~0.4 1000 Ambient Consumer Electronics / Hybrid Vehicles




/N-MnQO»

e The backbone of both alkaline and
acidic (zinc-carbon) batteries, though
the reaction is different

* As cheap as batteries come

* The complexities of various manganese
oxides and zinc morphologies make it
hard to recharge

e 1.6 Vto 1.1 V over a useful discharge



ZN-Alr

e By using ambient oxygen as the oxidant,
these batteries provide the best energy
density of any system

e Air electrodes are complex beasts, a
“bifunctional” air electrode does not yet exists
* we’re trying

* Once the battery is activated, reacts to

completion regardless of what you do
® energy vs. corrosion



Lithium Metal

o Batteries with a pure lithium negative electrode
* High energy density, long lasting

e watch batteries, pace makers

* Low power density by design to improve shelf life
o [nstability of lithium plating prevents cyclability

* explosive

e Lithium batteries have non-agqueous electrolytes,
cannot be exposed to air or oxygen

* explosive!



| ead Acid

e QOverall 140 years old

* [he most common, lowest cost secondary
battery

o Excellent power delivery
e Heavy

» Poor deep discharge performance
e ~500 cycles

* Nominally ~2 V per cell, dropping to ~1.5
over useful discharge life

http://en.wikipedia.org/wiki/l ead—acid_battery



http://en.wikipedia.org/wiki/Lead%E2%80%93acid_battery
http://en.wikipedia.org/wiki/Lead%E2%80%93acid_battery

NIMH

* A very popular secondary battery,
second now to lithium ion In consumer
electronics

e Essentially a “closed” fuel cell, hydrogen
IS stored as a metal hydride, oxygen is
stored in the nickel oxide

e Excellent cycle life, moderate cost
* Low operating potential (~1.4 V to 1.2 V)



NICO

e | ike NIMH, but a bit cheaper, much less
robust, and quite toxic internally

* Pro Tip: don’t use these!



Lithium lon

e Similar to
Lithium metal,
but with an
Intercalation
host for an
anode

a 0
U/
+ -
Positive Non-aqueous Negative
(Li, Host 1) liquid electrolyte (Lithium)

After 100 cycles

b ()
),
+ -
Positive Non-aqueous Negative
(Li, Host 1) liquid electrolyte (Li, Host 2)

Nature 2001 Tarascon



L ithium lon Cells

* A feat of materials and packaging
engineering

* A completely engineered structure
containing less than 1 PPM H20 and O

leads to unprecedented shelf life and
cycle life



L ithium lon Cells

* Many intercalation hosts available, most
common are graphite as the anode and
LiCoQO» as the cathode

* Charged potential of 4.2 V, down to ~2.5
V at full discharge (but you don’t want to
pull past 3.5 V if you can help it)

e Since P =1V, there’s a bigger penalty the lower you
go



Why Do Batteries Break'?



Vlass transfer

e Basically related to the issues of
reacting and moving a significant
fraction of mass quickly in a small
space



Uneven Surfaces over Cycles
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Uneven Surfaces over Cycles
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\Vlicroscopic Fracture
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Nano & Atomic Scale Stress
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What battery should you use”



| ithium lon Polymer

(99% of the time)



Why*

e Charge retention
* Energy Density
* Power Density

e [ oves Shallow Discharge
* No memory effect



Overspec the battery

* For long term applications

* At 80% Depth of Discharge (DoD) 500
Cycles

e At 50% DoD, 1500 Cycles
* At 10% DoD, > 10000 Cycles

* So If you use 10% of the battery, you
ultimately get > 2.5 times the energy
delivered



Undercharge the battery

* For an LiCoO2 cell, charge to 4 V
instead of 4.2V

Discharge Curve for a "Sony Cell"




Different Li lon Cells

* Three years ago, there was just one type
of cell to buy, but now there are a few.

* An easy guide;

* |f you want more capacity for a given size use
cells with a LiCoO2 cathode

* |f you want more power for a given size use cells
with a LiFePO4 cathode

* |f you want even more power, use the above
cathode with a LisTisO12 anode



But”

e | arge Li-Polymer-lon batteries generate
a lot of heat, and to handle them safely
serious regard must be given to cooling

source: tesla motors



Also, Money

* They’re quite expensive, roughly ~5 to
10 times more per unit energy than lead
acid, and 2-3 times more than NIMH



IN fact

* |f you want to “set it and forget it”*, you
may want to think about using alkaline
primaries

* Easier to implement, better energy density than any
secondary cell, and a fraction the cost of any
secondary cell per unit energy

* please don’t forget it



Overall



Batteries...

e Combine controlled chemical reaction
and mass transfer within confined
spaces

* Have benefited from materials
engineering, but not to the degree
enjoyed by ICs

* Will provide more energy over their
lifetime if cycled shallow and gently



Questions and Next Steps?

e Questions?

* Would you be interested in a “future of
batteries talk”?

* Or a workshop where you build and test
your own batteries?



